
Appendix A

OpenSound Control

Specification

Version 1.0, March 26 2002, Matt Wright.

LATEX by Uli Franke.

OpenSound Control (OSC) is an open, transport-independent, message-based protocol
developed for communication among computers, sound synthesizers, and other multi-
media devices.

A.1 OSC Syntax

This section defines the syntax of OSC data.

A.1.1 Atomic Data Types

All OSC data is composed of the following fundamental data types:

int32: 32-bit big-endian two’s complement integer

OSC-timetag: 64-bit big-endian fixed-point time tag, semantics defined below

float32: 32-bit big-endian IEEE 754 floating point number

OSC-string: A sequence of non-null ASCII characters followed by a null, followed
by 0-3 additional null characters to make the total number of bits a multiple of
32. (OSC-string examples) In this document, example OSC-strings will be written
without the null characters, surrounded by double quotes.

OSC-blob: An int32 size count, followed by that many 8-bit bytes of arbitrary binary
data, followed by 0-3 additional zero bytes to make the total number of bits a
multiple of 32.

The size of every atomic data type in OSC is a multiple of 32 bits. This guarantees that
if the beginning of a block of OSC data is 32-bit aligned, every number in the OSC data
will be 32-bit aligned.

A.1 OSC Syntax 37

OSC Type Tag Type of corresponding argument

i int32
f float32
s OSC-string
b OSC-blob

Table A.1: The meaning of each OSC Type Tag.

A.1.2 OSC Packets

The unit of transmission of OSC is an OSC Packet. Any application that sends OSC

Packets is an OSC Client; any application that receives OSC Packets is an OSC Server. An
OSC packet consists of its contents, a contiguous block of binary data, and its size, the
number of 8-bit bytes that comprise the contents. The size of an OSC packet is always
a multiple of 4.

The underlying network that delivers an OSC packet is responsible for delivering
both the contents and the size to the OSC application. An OSC packet can be naturally
represented by a datagram by a network protocol such as UDP. In a stream-based
protocol such as TCP, the stream should begin with an int32 giving the size of the first
packet, followed by the contents of the first packet, followed by the size of the second
packet, etc.

The contents of an OSC packet must be either an OSC Message or an OSC Bundle.
The first byte of the packet’s contents unambiguously distinguishes between these two
alternatives.

A.1.3 OSC Messages

An OSC message consists of an OSC Address Pattern followed by an OSC Type Tag String
followed by zero or more OSC Arguments.

Note: Some older implementations of OSC may omit the OSC Type Tag string. Until
all such implementations are updated, OSC implementations should be robust in the case
of a missing OSC Type Tag String.

OSC Address Patterns: An OSC Address Pattern is an OSC-string beginning with the
character ’/’ (forward slash).

OSC Type Tag String: An OSC Type Tag String is an OSC-string beginning with the
character ’,’ (comma) followed by a sequence of characters corresponding exactly
to the sequence of OSC Arguments in the given message. Each character after the
comma is called an OSC Type Tag and represents the type of the corresponding
OSC Argument. (The requirement for OSC Type Tag Strings to start with a comma
makes it easier for the recipient of an OSC Message to determine whether that OSC
Message is lacking an OSC Type Tag String.)

Table A.1 lists the correspondance between each OSC Type Tag and the type of its
corresponding OSC Argument. Some OSC applications communicate among instances of
themselves with additional, nonstandard argument types beyond those specified above.
OSC applications are not required to recognize these types; an OSC application should
discard any message whose OSC Type Tag String contains any unrecognized OSC Type

38 A OpenSound Control Specification

OSC Type Tag Type of corresponding argument

h 64 bit big-endian two’s complement integer
t OSC-timetag
d 64 bit (”double”) IEEE 754 floating point number
S Alternate type represented as an OSC-string (for example,

for systems that differentiate ”symbols” from ”strings”)
c an ascii character, sent as 32 bits
r 32 bit RGBA color
m 4 byte MIDI message. Bytes from MSB to LSB are: port

id, status byte, data1, data2
T True. No bytes are allocated in the argument data.
F False. No bytes are allocated in the argument data.
N Nil. No bytes are allocated in the argument data.
I Infinitum. No bytes are allocated in the argument data.
[Indicates the beginning of an array. The tags following are

for data in the Array until a close brace tag is reached.
] Indicates the end of an array.

Table A.2: OSC Type Tags that must be used for certain nonstandard argument types.

Tags. An application that does use any additional argument types must encode them
with the OSC Type Tags in table A.1.

A.1.4 OSC Arguments

A sequence of OSC Arguments is represented by a contiguous sequence of the binary
representations of each argument.

A.1.5 OSC Bundles

An OSC Bundle consists of the OSC-string ”#bundle” followed by an OSC Time Tag,
followed by zero or more OSC Bundle Elements. The OSC-timetag is a 64-bit fixed point
time tag whose semantics are described below.

An OSC Bundle Element consists of its size and its contents. The size is an int32
representing the number of 8-bit bytes in the contents, and will always be a multiple of
4. The contents are either an OSC Message or an OSC Bundle.

Note this recursive definition: bundle may contain bundles.

A.2 OSC Semantics

This section defines the semantics of OSC data.

A.2.1 OSC Address Spaces and OSC Addresses

Every OSC server has a set of OSC Methods. OSC Methods are the potential destinations
of OSC messages received by the OSC server and correspond to each of the points of
control that the application makes available.

A.2 OSC Semantics 39

Data Size Purpose
OSC-string ”#bundle” 8 bytes How to know that this

data is a bundle
OSC-timetag 8 bytes Time tag that applies to

the entire bundle
Size of first bundle ele-
ment

int32 = 4 bytes First bundle element

First bundle element’s
contents

As many bytes as given
by ”size of first bundle el-
ement”

First bundle element

Size of second bundle ele-
ment

int32 = 4 bytes Second bundle element

Second bundle element’s
contents

As many bytes as given by
”size of second bundle ele-
ment”

Second bundle element

etc. Addtional bundle ele-
ments

Table A.3: This table shows the parts of a two-or-more-element OSC Bundle and the
size (in 8-bit bytes) of each part.

”Invoking” an OSC method is analogous to a procedure call.

it means supplying the method with arguments and causing the method’s effect to take
place.

An OSC Server’s OSC Methods are arranged in a tree strcuture called an OSC Address
Space. The leaves of this tree are the OSC Methods and the branch nodes are called OSC

Containers. An OSC Server’s OSC Address Space can be dynamic; that is, its contents
and shape can change over time.

Each OSC Method and each OSC Container other than the root of the tree has a
symbolic name, an ASCII string consisting of printable characters other than the ones
showed in table A.2.1.

The OSC Address of an OSC Method is a symbolic name giving the full path to the OSC
Method in the OSC Address Space, starting from the root of the tree. An OSC Method’s
OSC Address begins with the character ’/’ (forward slash), followed by the names of all
the containers, in order, along the path from the root of the tree to the OSC Method,
separated by forward slash characters, followed by the name of the OSC Method. The
syntax of OSC Addresses was chosen to match the syntax of URLs. (see OSC Address
Examples)

A.2.2 OSC Message Dispatching and Pattern Matching

When an OSC server receives an OSC Message, it must invoke the appropriate OSC Meth-
ods in its OSC Address Space based on the OSC Message’s OSC Address Pattern. This
process is called dispatching the OSC Message to the OSC Methods that match its OSC

Address Pattern. All the matching OSC Methods are invoked with the same argument
data, namely, the OSC Arguments in the OSC Message.

The parts of an OSC Address or an OSC Address Pattern are the substrings between
adjacent pairs of forward slash characters and the substring after the last forward slash

40 A OpenSound Control Specification

Char Name Code

’ ’ space 32
number sign 35
* asterisk 42
, comma 44
/ forward slash 47
? question mark 63
[open bracket 91
] close bracket 93
{ open curly brace 123
} close curly brace 125

Table A.4: Printable ASCII characters not allowed in names of OSC Methods or OSC

Containers character name ASCII code (decimal)

character. (examples)
A received OSC Message must be dispatched to every OSC method in the current OSC

Address Space whose OSC Address matches the OSC Message’s OSC Address Pattern. An
OSC Address Pattern matches an OSC Address if

1. The OSC Address and the OSC Address Pattern contain the same number of parts;
and

2. Each part of the OSC Address Pattern matches the corresponding part of the OSC

Address.

A part of an OSC Address Pattern matches a part of an OSC Address if every consec-
utive character in the OSC Address Pattern matches the next consecutive substring of
the OSC Address and every character in the OSC Address is matched by something in the
OSC Address Pattern. These are the matching rules for characters in the OSC Address
Pattern:

1. ”?” in the OSC Address Pattern matches any single character

2. ”*” in the OSC Address Pattern matches any sequence of zero or more characters

3. A string of characters in square brackets (e.g., ”[string]”) in the OSC Address
Pattern matches any character in the string. Inside square brackets, the minus
sign (-) and exclamation point (!) have special meanings:

• two characters separated by a minus sign indicate the range of characters
between the given two in ASCII collating sequence. (A minus sign at the end
of the string has no special meaning.)

• An exclamation point at the beginning of a bracketed string negates the sense
of the list, meaning that the list matches any character not in the list. (An
exclamation point anywhere besides the first character after the open bracket
has no special meaning.)

4. A comma-separated list of strings enclosed in curly braces (e.g., ”{foo,bar}”) in
the OSC Address Pattern matches any of the strings in the list.

5. Any other character in an OSC Address Pattern can match only the same character.

A.3 OpenSound Control Spec Examples 41

A.2.3 Temporal Semantics and OSC Time Tags

An OSC server must have access to a representation of the correct current absolute time.
OSC does not provide any mechanism for clock synchronization.

When a received OSC Packet contains only a single OSC Message, the OSC Server
should invoke the correponding OSC Methods immediately, i.e., as soon as possible after
receipt of the packet. Otherwise a received OSC Packet contains an OSC Bundle, in which
case the OSC Bundle’s OSC Time Tag determines when the OSC Bundle’s OSC Messages’
corresponding OSC Methods should be invoked. If the time represented by the OSC Time
Tag is before or equal to the current time, the OSC Server should invoke the methods
immediately (unless the user has configured the OSC Server to discard messages that
arrive too late). Otherwise the OSC Time Tag represents a time in the future, and
the OSC server must store the OSC Bundle until the specified time and then invoke the
appropriate OSC Methods.

Time tags are represented by a 64 bit fixed point number. The first 32 bits specify
the number of seconds since midnight on January 1, 1900, and the last 32 bits specify
fractional parts of a second to a precision of about 200 picoseconds. This is the rep-
resentation used by Internet NTP timestamps.The time tag value consisting of 63 zero
bits followed by a one in the least signifigant bit is a special case meaning ”immediately.”

OSC Messages in the same OSC Bundle are atomic; their corresponding OSC Methods
should be invoked in immediate succession as if no other processing took place between
the OSC Method invocations.

When an OSC Address Pattern is dispatched to multiple OSC Methods, the order
in which the matching OSC Methods are invoked is unspecified. When an OSC Bundle
contains multiple OSC Messages, the sets of OSC Methods corresponding to the OSC

Messages must be invoked in the same order as the OSC Messages appear in the packet.
(example)

When bundles contain other bundles, the OSC Time Tag of the enclosed bundle must
be greater than or equal to the OSC Time Tag of the enclosing bundle. The atomicity
requirement for OSC Messages in the same OSC Bundle does not apply to OSC Bundles
within an OSC Bundle.

A.3 OpenSound Control Spec Examples

This section provides examples to support the OpenSound Control Specification. It was
taken from OpenSound Control Spec Examples by Matt Wright, Version 1.0, March 29
2002.

A.3.1 OSC-string examples

The string ”OSC” is represented as an OSC-string with these four bytes:

O S C \0

The string ”data” is represented as an OSC-string with these eight bytes:

d a t a \0 \0 \0 \0

A.3.2 OSC Type Tag String Examples

See table A.3.2.

42 A OpenSound Control Specification

Argument types OSC Type Tag String

One float32 argument ”,f”
Two int32 arguments
followed by one OSC-string
argument followed by
three float32 arguments

”,iisfff”

No arguments ”,”
An int32 argument fol-
lowed by two OSC-blob ar-
guments

,ibb

Table A.5: Example OSC Type Tag Strings

A.3.3 OSC Address Examples

Suppose a particular OSC Address Space includes an OSC Method with the name ”frequency”.
This method is contained in an OSC Container with the name ”3”, which is contained in
another OSC container named ”resonators”, which is contained in the OSC container that
is the root of the address space tree. The method’s OSC Address is ”/resonators/3/frequency”.

The OSC Address ”/a/b/c/d/e” means that:

• The root of the tree contains an OSC Container with the name ”a”,

• that OSC Container contains an OSC Container with the name ”b”,

• that OSC Container contains an OSC Container with the name ”c”,

• that OSC Container contains an OSC Container with the name ”d”, and

• that OSC Container contains an OSC Method with the name ”e”.

A.3.4 OSC Address Parts Examples

There are three parts of the OSC Address ”/a/b/cde”: ”a”, ”b”, and ”cde”. Note that
the last part is the name of the OSC Method and the other parts are the names of the
OSC Containers that (recursively) contain the method.

There are three parts of the OSC Address pattern ”/?/b/*c”: ”?”, ”b”, and ”*c”.

A.3.5 OSC Message Examples

In each of these examples, each byte of a message is printed first in hexadecimal, followed
by the corresponding ASCII character in parentheses.

The OSC Message with the OSC Address Pattern ”/oscillator/4/frequency” and
the floating point number 440.0 as the single argument would be represented by the
following 32-byte message:

2f (/) 6f (o) 73 (s) 63 (c)

69 (i) 6c (l) 6c (l) 61 (a)

74 (t) 6f (o) 72 (r) 2f (/)

34 (4) 2f (/) 66 (f) 72 (r)

65 (e) 71 (q) 75 (u) 65 (e)

A.3 OpenSound Control Spec Examples 43

6e (n) 63 (c) 79 (y) 0 ()

2c (,) 66 (f) 0 () 0 ()

43 (C) dc (Ü) 0 () 0 ()

The next example shows the 40 bytes in the representation of the OSC Message with
OSC Address Pattern ”/foo” and 5 arguments:

1. The int32 1000

2. The int32 -1

3. The string ”hello”

4. The float32 1.234

5. The float32 5.678

2f (/) 66 (f) 6f (o) 6f (o)

0 () 0 () 0 () 0 ()

2c (,) 69 (i) 69 (i) 73 (s)

66 (f) 66 (f) 0 () 0 ()

0 () 0 () 3 () e8 (è)

ff (ß) ff (ß) ff (ß) ff (ß)

68 (h) 65 (e) 6c (l) 6c (l)

6f (o) 0 () 0 () 0 ()

3f (?) 9d () f3 (ó) b6 (u)

40 (@) b5 (ţ) b2 (Ť) 2d (-)

A.3.6 Order of Invocation of OSC Methods matched by OSC Mes-

sages in an OSC Bundle

Suppose an OSC Servers’ OSC Address Space includes methods with the following OSC

Addresses:

• ”/first/this/one”

• ”/second/1”

• ”/second/2”

• ”/third/a”

• ”/third/b”

• ”/third/c”

Suppose an OSC Bundle is received that contains three OSC Messages, and that the three
OSC Messages have these OSC Address Patterns:

1. /first/this/one

2. /second/[1-2]

3. /third/*

Six methods will be invoked in this order:

44 A OpenSound Control Specification

(1) First ”/first/this/one”, since that OSC Address Pattern appeared first in the OSC
Bundle; then

(2-3) Either ”/second/1”followed ”/second/2”or ”/second/2”followed by ”/second/1”;
then

(3-6) ”/third/a”, ”/third/b”, and ”/third/c”, in any order.

There are twelve possible orders in which an OSC server may invoke these six methods:

1. ”/first/this/one”, ”/second/1”, ”/second/2”, ”/third/a”, ”/third/b”, ”/third/c”

2. ”/first/this/one”, ”/second/1”, ”/second/2”, ”/third/a”, ”/third/c”, ”/third/b”

3. ”/first/this/one”, ”/second/1”, ”/second/2”, ”/third/b”, ”/third/a”, ”/third/c”

4. ”/first/this/one”, ”/second/1”, ”/second/2”, ”/third/b”, ”/third/c”, ”/third/a”

5. ”/first/this/one”, ”/second/1”, ”/second/2”, ”/third/c”, ”/third/a”, ”/third/b”

6. ”/first/this/one”, ”/second/1”, ”/second/2”, ”/third/c”, ”/third/b”, ”/third/a”

7. ”/first/this/one”, ”/second/2”, ”/second/1”, ”/third/a”, ”/third/b”, ”/third/c”

8. ”/first/this/one”, ”/second/2”, ”/second/1”, ”/third/a”, ”/third/c”, ”/third/b”

9. ”/first/this/one”, ”/second/2”, ”/second/1”, ”/third/b”, ”/third/a”, ”/third/c”

10. ”/first/this/one”, ”/second/2”, ”/second/1”, ”/third/b”, ”/third/c”, ”/third/a”

11. ”/first/this/one”, ”/second/2”, ”/second/1”, ”/third/c”, ”/third/a”, ”/third/b”

12. ”/first/this/one”, ”/second/2”, ”/second/1”, ”/third/c”, ”/third/b”, ”/third/a”

	Table of Contents
	Preface
	General Topics
	Definitions and Abbreviations
	Protection of Intellectual Property
	Deployment of Code and Licenses
	In-System Security
	Production and Maintenance
	Licensing

	Configuration and Operation
	Configuration
	Operation

	Software-Design
	Introduction
	Sourcecode- and Version-Management
	Sourcecode-Documentation
	Notation Conventions

	Communication between WS and PH
	General
	Addressing
	Automatic Recognition of Power-House
	Manual ''Recognition'' of Power-House Devices

	Protocols
	Which Network Transport Protocol to Use?
	Which High-Level Communication Protocol to Use?

	OSC-Messages

	Configurator/GUI
	Identification of driver
	Identification of connected devices
	Configuration of the connected devices

	Plug Ins
	Plug In Types
	RTAS
	Direct X
	TDM
	VST
	HTDM
	AU
	Premiere
	AudioSuite
	MAS

	Weiss Graphical User Interface
	Buttons
	Knobs
	Fader
	Editors
	VU-Meter
	FFT-Display

	Weiss Power-House VST Plugins
	Initialization

	ASIO Driver
	Osc Library
	Documentation
	Primary Classes
	OscAddress
	OscMessage
	OscBlob
	OscBundle and OscBundleElement

	Secondary Classes
	OSC-Rx-Tx Test Suite
	Rx
	Tx

	OpenSound Control Specification
	OSC Syntax
	Atomic Data Types
	OSC Packets
	OSC Messages
	OSC Arguments
	OSC Bundles

	OSC Semantics
	OSC Address Spaces and OSC Addresses
	OSC Message Dispatching and Pattern Matching
	Temporal Semantics and OSC Time Tags

	OpenSound Control Spec Examples
	OSC-string examples
	OSC Type Tag String Examples
	OSC Address Examples
	OSC Address Parts Examples
	OSC Message Examples
	Order of Invocation of OSC Methods

	References

